Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Diabet Med ; 41(5): e15265, 2024 May.
Article En | MEDLINE | ID: mdl-38093550

AIMS: The aim is to identify people with HNF1A-MODY among individuals in diabetic cohort solely based on low hs-CRP serum level and early diabetes onset. METHODS: In 3537 participants, we analyzed the hs-CRP levels. We analyzed the HNF1A gene in 50 participants (1.4% of the cohort) with type 1 or type 2 diabetes who had hs-CRP ≤0.25 mg/L and were diagnosed with diabetes mellitus (DM) at the age of 8-40 years. We functionally characterized two identified missense variants. RESULTS: Three participants had a rare variant in the HNF1A gene, two of which we classified as likely pathogenic: c.1369_1384dup (p.Val462Aspfs*92) and c.737T>G (p.Val246Gly), and one as likely benign: c.1573A>T (p.Thr525Ser). Our functional studies revealed that p.Val246Gly decreased HNF1α transactivation activity to ~59% and the DNA binding ability to ~16% of the wild-type, while p.Thr525Ser variant showed no effect on transactivation activity, DNA binding, nor nuclear localization. Based on the two identified HNF1A-MODY patients among 3537 people with diabetes, we estimate 0.057% as the minimal HNF1A-MODY prevalence in Slovakia. A positive predictive value of hs-CRP ≤0.25 mg/L for finding HNF1A-MODY individuals was 4.0% (95% CI 0.7%, 13.5%). CONCLUSIONS: Hs-CRP value and age of DM onset could be an alternative approach to current diagnostic criteria with a potential to increase the diagnostic rate of HNF1A-MODY.


C-Reactive Protein , Diabetes Mellitus, Type 2 , Humans , Child , Adolescent , Young Adult , Adult , C-Reactive Protein/metabolism , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Biomarkers , Age of Onset , Hepatocyte Nuclear Factor 1-alpha/genetics , DNA , Mutation
2.
Genes (Basel) ; 14(12)2023 Dec 03.
Article En | MEDLINE | ID: mdl-38136996

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy resulting from dysfunction of the protein myotubularin encoded by the MTM1 gene. XLMTM has a high neonatal and infantile mortality rate due to a severe myopathic phenotype and respiratory failure. However, in a minority of XLMTM cases, patients present with milder phenotypes and achieve ambulation and adulthood. Notable facial dysmorphia is also present. METHODS: We investigated the genotype-phenotype correlations in newly diagnosed XLMTM patients in a patients' cohort (previously published data plus three novel variants, n = 414). Based on the facial gestalt difference between XLMTM patients and unaffected controls, we investigated the use of the Face2Gene application. RESULTS: Significant associations between severe phenotype and truncating variants (p < 0.001), frameshift variants (p < 0.001), nonsense variants (p = 0.006), and in/del variants (p = 0.036) were present. Missense variants were significantly associated with the mild and moderate phenotype (p < 0.001). The Face2Gene application showed a significant difference between XLMTM patients and unaffected controls (p = 0.001). CONCLUSIONS: Using genotype-phenotype correlations could predict the disease course in most XLMTM patients, but still with limitations. The Face2Gene application seems to be a practical, non-invasive diagnostic approach in XLMTM using the correct algorithm.


Mutation, Missense , Myopathies, Structural, Congenital , Infant, Newborn , Humans , Prognosis , Phenotype , Myopathies, Structural, Congenital/diagnosis , Myopathies, Structural, Congenital/genetics , Genetic Association Studies
3.
Orphanet J Rare Dis ; 18(1): 92, 2023 04 24.
Article En | MEDLINE | ID: mdl-37095554

BACKGROUND: Pathogenic variants in the ATAD3A gene lead to a heterogenous clinical picture and severity ranging from recessive neonatal-lethal pontocerebellar hypoplasia through milder dominant Harel-Yoon syndrome up to, again, neonatal-lethal but dominant cardiomyopathy. The genetic diagnostics of ATAD3A-related disorders is also challenging due to three paralogous genes in the ATAD3 locus, making it a difficult target for both sequencing and CNV analyses. RESULTS: Here we report four individuals from two families with compound heterozygous p.Leu77Val and exon 3-4 deletion in the ATAD3A gene. One of these patients was characterized as having combined OXPHOS deficiency based on decreased complex IV activities, decreased complex IV, I, and V holoenzyme content, as well as decreased levels of COX2 and ATP5A subunits and decreased rate of mitochondrial proteosynthesis. All four reported patients shared a strikingly similar clinical picture to a previously reported patient with the p.Leu77Val variant in combination with a null allele. They presented with a less severe course of the disease and a longer lifespan than in the case of biallelic loss-of-function variants. This consistency of the phenotype in otherwise clinically heterogenous disorder led us to the hypothesis that the severity of the phenotype could depend on the severity of variant impact. To follow this rationale, we reviewed the published cases and sorted the recessive variants according to their impact predicted by their type and the severity of the disease in the patients. CONCLUSION: The clinical picture and severity of ATAD3A-related disorders are homogenous in patients sharing the same combinations of variants. This knowledge enables deduction of variant impact severity based on known cases and allows more accurate prognosis estimation, as well as a better understanding of the ATAD3A function.


ATPases Associated with Diverse Cellular Activities , Biological Variation, Population , Mitochondria , ATPases Associated with Diverse Cellular Activities/genetics , Mitochondria/genetics , Phenotype , Humans
4.
Sci Rep ; 13(1): 6790, 2023 04 26.
Article En | MEDLINE | ID: mdl-37100887

Little is known about complete remission in Type 1 diabetes mellitus (T1D) with the discontinuance of insulin treatment for a period of time. In this retrospective study we analysed the frequency and factors of onset and duration of 1. remission and 2. complete remission in children and adolescents with T1D from the Children Diabetes Centre in Bratislava, Slovakia. A total of 529 individuals with T1D, aged < 19 years (8.5 ± 4.3 years) at diabetes onset were included in the study. Remission was defined by HbA1c < 7.0% (53 mmol/mol) and an insulin daily dose < 0.5 IU/kg (and 0 IU/kg for complete remission). Remission occurred in 210 (39.7%) participants, and 15 of them had complete remission (2.8% from all participants). We have identified a new independent factor of complete remission onset (higher C-peptide). Complete remitters had a longer duration of remission compared with other remitters and also differed in lower HbA1c levels. No association was seen with autoantibodies or genetic risk score for T1D. Thus, not only partial but also complete remission is influenced by factors pointing toward an early diagnosis of T1D, which is important for better patient outcome.


Diabetes Mellitus, Type 1 , Humans , Child , Adolescent , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/diagnosis , Retrospective Studies , Glycated Hemoglobin , Prevalence , Insulin/therapeutic use , Remission Induction , Hypoglycemic Agents/therapeutic use
5.
Neurol Genet ; 9(6): e200106, 2023 Dec.
Article En | MEDLINE | ID: mdl-38235041

Objectives: The PMPCA gene encodes the α-subunit of mitochondrial processing peptidase (α-MPP), an enzyme responsible for cleavage of nuclear-encoded mitochondrial precursor proteins after their import into mitochondria. Mutations in this gene have been described in patients with nonprogressive or slow progressive cerebellar ataxia, with variable age at onset and severity. Cerebellar atrophy and striatum changes were found in severe cases. Methods: The patient was diagnosed using whole exome sequencing. Skin fibroblasts were used for confirmation of α-MPP levels using western blot and mitochondrial morphology assessment of immunofluorescent confocal microscopy images. Results: Two novel compound heterozygous variants in the PMPCA gene (p.Tyr241Ser and p.Met251Val) were identified in an 8-year-old proband with progressive spastic quadriparesis, delayed psychomotor development, and intellectual disability, with onset at 13 months. The brain imaging showed cortical and cerebellar atrophy, reduced volume of basal ganglia with striatum hyperintensity, and periventricular white matter changes. The patient's fibroblasts showed a decreased α-MPP level and reduced and fragmented mitochondria. Discussion: The described case contributes to the number of patients with progressive PMPCA-related disease with a severe intermediate phenotype. Moreover, we extend the phenotype to Leigh-like white matter changes that have not been described in previously reported cases.

6.
Endocr Regul ; 56(3): 232-248, 2022 Jul 13.
Article En | MEDLINE | ID: mdl-35843711

Mitochondria, the cell powerhouse, are membrane-bound organelles present in the cytoplasm of almost all the eukaryotic cells. Their main function is to generate energy in the form of adenosine triphosphate (ATP). In addition, mitochondria store calcium for the cell signaling activities, generate heat, harbor pathways of intermediate metabolism and mediate cell growth and death. Primary mitochondrial diseases (MDs) form a clinically as well as genetically heterogeneous group of inherited disorders that result from the mitochondrial energetic metabolism malfunctions. The lifetime risk of the MDs development is estimated at 1:1470 of newborns, which makes them one of the most recurrent groups of inherited disorders with an important burden for society. MDs are progressive with wide range of symptoms of variable severity that can emerge congenitally or anytime during the life. MD can be caused by mutations in the mitochondrial DNA (mtDNA) or nuclear DNA genes. Mutations inducing impairment of mitochondrial function have been found in more than 400 genes. Furthermore, more than 1200 nuclear genes, which could play a role in the MDs' genetic etiology, are involved in the mitochondrial activities. However, the knowledge regarding the mechanism of the mitochondrial pathogenicity appears to be most essential for the development of effective patient's treatment suffering from the mitochondrial disease. This is an overview update focused on the mitochondrial biology and the mitochondrial diseases associated genes.


Mitochondrial Diseases , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Infant, Newborn , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mutation
7.
BMC Pediatr ; 21(1): 578, 2021 12 16.
Article En | MEDLINE | ID: mdl-34915869

BACKGROUND: Isolated methylmalonic aciduria can be caused by pathogenic mutations in the gene for methylmalonyl-CoA mutase or in the genes encoding enzymes involved in the intracellular metabolism of cobalamin. Some of these mutations may be cobalamin responsive. The type of methylmalonic aciduria cannot always be assumed from clinical manifestation and the responsiveness to cobalamin has to be assessed for appropriate cobalamin administration, or to avoid unnecessary treatment. The cases presented herein highlight the importance of genetic testing in methylmalonic aciduria cases and the need for standardisation of the in vivo cobalamin-responsiveness assessment. CASE PRESENTATION: We describe two patients who presented in the first week of life with rapid neurological deterioration caused by metabolic acidosis with severe hyperammonaemia requiring extracorporeal elimination in addition to protein restriction, energy support, carnitine, and vitamin B12 treatment. The severity of the clinical symptoms and high methylmalonic acid concentrations in the urine (>30,000 µmol/mmol of creatinine) without hyperhomocysteinaemia in both of our patients suggested isolated methylmalonic aciduria. Based on the neonatal manifestation and the high methylmalonic acid urine levels, we assumed the cobalamin non-responsive form. The in vivo test of responsiveness to cobalamin was performed in both patients. Patient 1 was evaluated as non-responsive; thus, intensive treatment with vitamin B12 was not used. Patient 2 was responsive to cobalamin, but the dose was decreased to 1 mg i.m. every two weeks with daily oral treatment due to non-compliance. Genetic tests revealed bi-allelic mutations in the genes MMAB and MMAA in Patient 1 and 2, respectively. Based on these results, we were able to start intensive treatment with hydroxocobalamin in both patients. After the treatment intensification, there was no acute crisis requiring hospitalisation in Patient 1, and the urine methylmalonic acid levels further decreased in Patient 2. CONCLUSIONS: Despite carrying out the in vivo test of responsiveness to cobalamin in both patients, only the results of molecular genetic tests led us to the correct diagnosis and enabled intensive treatment with hydroxocobalamin. The combination of the standardized in vivo test of cobalamin responsiveness and genetic testing is needed for accurate diagnosis and appropriate treatment of isolated methylmalonic aciduria.


Amino Acid Metabolism, Inborn Errors , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/drug therapy , Amino Acid Metabolism, Inborn Errors/genetics , Genetic Testing , Humans , Infant, Newborn , Methylmalonic Acid , Methylmalonyl-CoA Mutase/genetics , Vitamin B 12/therapeutic use
8.
Sci Rep ; 11(1): 22488, 2021 11 18.
Article En | MEDLINE | ID: mdl-34795337

The genetic heterogeneity of sensorineural hearing loss (SNHL) is a major hurdle to the detection of disease-causing variants. We aimed to identify underlying causal genes associated with mid-frequency hearing loss (HL), which contributes to less than about 1% of SNHL cases, by whole exome sequencing (WES). Thirty families segregating mid-frequency SNHL, in whom biallelic GJB2 mutations had been previously excluded, were selected from among 851 families in our DNA repository of SNHL. DNA samples from the probands were subjected to WES analysis and searched for candidate variants associated with SNHL. We were able to identify the genetic aetiology in six probands (20%). In total, we found three pathogenic and three likely pathogenic variants in four genes (COL4A5, OTOGL, TECTA, TMPRSS3). One more proband was a compound heterozygote for a pathogenic variant and a variant of uncertain significance (VUS) in MYO15A gene. To date, MYO15A and TMPRSS3 have not yet been described in association with mid-frequency SNHL. In eight additional probands, eight candidate VUS variants were detected in five genes (DIAPH1, MYO7A, TECTA, TMC1, TSPEAR). Seven of these 16 variants have not yet been published or mentioned in the available databases. The most prevalent gene was TECTA, identified in 23% of all tested families. Furthermore, we confirmed the hypothesis that a substantive portion of cases with this conspicuous audiogram shape is a consequence of a genetic disorder.


Genetic Markers , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Adolescent , Adult , Age of Onset , Alleles , Audiometry, Pure-Tone , Child , Child, Preschool , Chromosomes, Human, X , Collagen/chemistry , Exome , Female , Genes, Recessive , Genetic Testing , Genetic Variation , Hair Cells, Auditory/metabolism , Hearing Tests , Heterozygote , Humans , Infant , Male , Membrane Proteins/genetics , Mutation , Myosins/genetics , Neoplasm Proteins/genetics , Nephritis, Hereditary/genetics , Pedigree , Serine Endopeptidases/genetics , Exome Sequencing
9.
Int J Pediatr Otorhinolaryngol ; 140: 110499, 2021 Jan.
Article En | MEDLINE | ID: mdl-33234331

Waardenburg syndrome (WS) is a clinically and genetically heterogeneous group of inherited disorders manifesting with sensorineural hearing loss and pigmentary anomalies. Here we present two Caucasian families with novel variants in EDNRB and SOX10 representing both sides of phenotype spectrum in WS. The c.521G>A variant in EDNRB identified in Family 1 leads to disruption of the cysteine disulfide bridge between extracellular segments of endothelin receptor type B and causes relatively mild phenotype of WS type II with low penetrance. The novel nonsense variant c.900C>A in SOX10 detected in Family 2 leads to PCWH syndrome and was found to be lethal.


Waardenburg Syndrome , Humans , Mutation , Phenotype , Receptor, Endothelin B/genetics , SOXE Transcription Factors/genetics , Syndrome , Waardenburg Syndrome/genetics
10.
Orphanet J Rare Dis ; 15(1): 222, 2020 08 26.
Article En | MEDLINE | ID: mdl-32847582

BACKGROUND: The Roma are a European ethnic minority threatened by several recessive diseases. Variants in MANBA cause a rare lysosomal storage disorder named beta-mannosidosis whose clinical manifestation includes deafness and mental retardation. Since 1986, only 23 patients with beta-mannosidosis and biallelic MANBA variants have been described worldwide. RESULTS: We now report on further 10 beta-mannosidosis patients of Roma origin from eight families in the Czech and Slovak Republics with hearing loss, mental retardation and homozygous pathogenic variants in MANBA. MANBA variant c.2158-2A>G screening among 345 anonymized normal hearing controls from Roma populations revealed a carrier/heterozygote frequency of 3.77%. This is about 925 times higher than the frequency of this variant in the gnomAD public database and classifies the c.2158-2A>G variant as a prevalent, ethnic-specific variant causing hearing loss and mental retardation in a homozygous state. The frequency of heterozygotes/carriers is similar to another pathogenic variant c.71G>A (p.W24*) in GJB2, regarded as the most frequent variant causing deafness in Roma populations. CONLCUSION: Beta-mannosidosis, due to a homozygous c.2158-2A>G MANBA variant, is an important and previously unknown cause of hearing loss and mental retardation among Central European Roma.


Deafness , Hearing Loss , Roma , beta-Mannosidosis , Czech Republic , Deafness/genetics , Ethnicity , Hearing Loss/genetics , Humans , Minority Groups , Roma/genetics , Slovakia/epidemiology
11.
Endocr Regul ; 54(4): 260-265, 2020 Nov 24.
Article En | MEDLINE | ID: mdl-33885251

Objective. Mutations of the KCNJ11 gene are the most common cause of the permanent neonatal diabetes mellitus (PNDM). Majority of people with KNCJ11-PNDM have a de-novo mutation. We aimed to compare diabetes phenotype in two children and their mothers with PNDM carrying the same sulfonylurea-sensitive KCNJ11 variants.Methods. We have compared glibenclamide (sulfonylurea) dose, C-peptide, and HbA1c serum levels in two children and their mothers with PNDM up to 5.5-year follow-up. All of them were carrying a heterozygous activating KCNJ11 pathogenic variant (p.R201H in Family 1 or p.H46Y in Family 2). The mothers were initially treated with insulin and successfully switched to sulfonylurea at the age of 24 and 11 years, respectively. Both children were treated with sulfonylurea since the diagnosis of PNDM.Results. Glibenclamide dose was similar in both children (0.02-0.03 mg/kg/day), but lower compared to their mothers (0.1-0.4 mg/kg/day) (p<0.002). Fasting serum C-peptide levels were also lower in children (70-210 pmol/l) than in their mothers (263-720 pmol/l) (p<0.002), but no significant differences were observed in postprandial C-peptide levels. HbA1c was lower only in the son of SVK4 (Family 2) compared to his mother, as she had poor adherence to the sulfonylurea therapy during the first years after the sulfonylurea switch.Conclusions. Evaluation of the treatment in people with sulfonylurea-sensitive KNCJ11-PNDM should respect the age of patients together with the type of mutation and duration of diabetes at therapy start and may differ within one family.


Diabetes Mellitus/blood , Diabetes Mellitus/genetics , Potassium Channels, Inwardly Rectifying/genetics , Adult , C-Peptide/blood , Child, Preschool , Diabetes Mellitus/drug therapy , Female , Follow-Up Studies , Glycated Hemoglobin , Humans , Hypoglycemic Agents/administration & dosage , Male , Mothers , Pedigree , Phenotype , Sulfonylurea Compounds/administration & dosage
12.
Endocr Regul ; 53(2): 110-134, 2019 Apr 01.
Article En | MEDLINE | ID: mdl-31517624

MODY (Maturity Onset Diabetes of the Young) is a type of diabetes resulting from a pathogenic effect of gene mutations. Up to date, 13 MODY genes are known. Gene HNF1A is one of the most common causes of MODY diabetes (HNF1A-MODY; MODY3). This gene is polymorphic and more than 1200 pathogenic and non-pathogenic HNF1A variants were described in its UTRs, exons and introns. For HNF1A-MODY, not just gene but also phenotype heterogeneity is typical. Although there are some clinical instructions, HNF1A-MODY patients often do not meet every diagnostic criteria or they are still misdiagnosed as type 1 and type 2 diabetics. There is a constant effort to find suitable biomarkers to help with in distinguishing of MODY3 from Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). DNA sequencing is still necessary for unambiguous confirmation of clinical suspicion of MODY. NGS (Next Generation Sequencing) methods brought discoveries of multiple new gene variants and new instructions for their pathogenicity classification were required. The most actual problem is classification of variants with uncertain significance (VUS) which is a stumbling-block for clinical interpretation. Since MODY is a hereditary disease, DNA analysis of family members is helpful or even crucial. This review is updated summary about HNF1A-MODY genetics, pathophysiology, clinics functional studies and variant classification.


Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/therapy , Hepatocyte Nuclear Factor 1-alpha/genetics , Mutation , Biomarkers/analysis , DNA Mutational Analysis , Diabetes Mellitus, Type 2/classification , Diagnosis, Differential , Humans , Phenotype
13.
BMC Med Genet ; 20(1): 84, 2019 05 17.
Article En | MEDLINE | ID: mdl-31101089

BACKGROUND: Progressive bilateral sensorineural deafness in postlingual period may be linked to many different etiologies including genetic factors. Identification of the exact deafness cause may, therefore, be quite challenging. Here we present a family with late-onset hearing loss as an autosomal dominant trait caused by a novel EYA4 mutation. CASE PRESENTATION: Forty-four years old female proband clinically investigated for progressive hearing loss and occasional dizziness with positive family history for deafness was subject to molecular-genetic testing. Patient's DNA sample was analyzed by whole exome sequencing. We identified a novel missense variant c.804G > C located at the last base pair of exon 10 in EYA4. Candidate variant was confirmed by Sanger sequencing in the proband and her family members. In silico prediction tools and co-segregation analysis were used to indicate pathogenicity of the identified variant. To confirm our hypothesis, we performed minigene assay to demonstrate if the transcript of exon 10 in EYA4 is present. We provide evidence that this mutation in vitro compromises donor site functionality and causes exon 10 skipping and frameshift that most likely results in nonsense-mediated mRNA decay. The onset of moderate to severe hearing loss in the family ranged from 10 to 40 years. The normal cardiac phenotype was confirmed by ECG and echocardiography. CONCLUSIONS: We identified a novel EYA4 mutation associated with adult-onset autosomal dominant sensorineural hearing loss. This report extends the knowledge of spectrum of EYA4 mutations and demonstrates the pathogenicity of a variant affecting specific position in the gene. A comprehensive review of known EYA4 mutations is also given and their impact on cardiac phenotype is discussed. Our findings highlight the importance of genetic testing and complex clinical assessment in patients with familial progressive hearing loss.


Genes, Dominant , Hearing Loss/genetics , Trans-Activators/genetics , Age of Onset , Female , Humans , Middle Aged , Slovakia
14.
J Mol Neurosci ; 67(4): 559-563, 2019 Apr.
Article En | MEDLINE | ID: mdl-30632081

Impairment of saposin B causes rare atypical metachromatic leukodystrophy (MLD). It is encoded (together with saposin A, C, and D) by the PSAP gene. Only ten pathogenic variants were described in the PSAP gene in MLD patients to date. We report on two novel variants in the PSAP gene - c.679_681delAAG in the saposin B encoding exon 6 and c.1268delT in the saposin D encoding exon 11 in a patient with MLD. We discuss the fact, that variants resulting in PSAP null allele can be shared in patients with the deficit of other saposins (A-D) or whole prosaposin. The patient's phenotype depends then on the nature of the second allele - atypical Gaucher disease in case of saposin A, MLD in case of saposin B, and Krabbe disease in case of saposin C impairing mutations. The clinically most severe prosaposin deficit is caused by the presence of two PSAP null alleles. Thus, the assessment of a variant impact is needed to prevent delayed diagnosis or misdiagnosis in patients with PSAP mutations.


Leukodystrophy, Metachromatic/genetics , Loss of Function Mutation , Saposins/genetics , Exons , Humans , Infant , Leukodystrophy, Metachromatic/pathology , Male , Phenotype
15.
Endocr Regul ; 52(2): 110-118, 2018 Apr 01.
Article En | MEDLINE | ID: mdl-29715184

OBJECTIVES: Leigh syndrome is a progressive early onset neurodegenerative disease typically presenting with psychomotor regression, signs of brainstem and/or basal ganglia disease, lactic acidosis, and characteristic magnetic resonance imaging findings. At molecular level, deficiency of respiratory complexes and/or pyruvate dehydrogenase complex is usually observed. Nuclear gene SURF1 encodes an assembly factor for cytochrome c-oxidase complex of the respiratory chain and autosomal recessive mutations in SURF1 are one of the most frequent causes of cytochrome c-oxidase-related Leigh syndrome cases. Here, we aimed to elucidate the genetic basis of Leigh syndrome in three Slovak families. METHODS AND RESULTS: Three probands presenting with Leigh syndrome were selected for DNA analysis. The first proband, presenting with atypical LS onset without abnormal basal ganglia magnetic resonance imaging findings, was analyzed with whole exome sequencing. In the two remaining probands, SURF1 was screened by Sanger sequencing. Four different heterozygous mutations were identified in SURF1: c.312_321delinsAT:p.(Pro104Profs*1), c.588+1G>A, c.823_833+7del:p. (?) and c.845_846del:p.(Ser282Cysfs*9). All the mutations are predicted to have a loss-of-function effect. CONCLUSIONS: We identified disease-causing mutations in all three probands, which points to the important role of SURF1 gene in etiology of Leigh syndrome in Slovakia. Our data showed that patients with atypical Leigh syndrome phenotype without lesions in basal ganglia may benefit from the whole exome sequencing method. In the case of probands presenting the typical phenotype, Sanger sequencing of the SURF1 gene seems to be an effective method of DNA analysis.


Leigh Disease/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Child , Child, Preschool , Female , Humans , Infant , Leigh Disease/diagnostic imaging , Leigh Disease/pathology , Leigh Disease/physiopathology , Male , Membrane Proteins/antagonists & inhibitors , Mitochondrial Proteins/antagonists & inhibitors , Mutation , Pedigree , Slovakia , Exome Sequencing
17.
PLoS One ; 12(5): e0177222, 2017.
Article En | MEDLINE | ID: mdl-28472148

BACKGROUND: Inactivating mutations of the hypothalamic transcription factor singleminded1 (SIM1) have been shown as a cause of early-onset severe obesity. However, to date, the contribution of SIM1 mutations to the obesity phenotype has only been studied in a few populations. In this study, we screened the functional regions of SIM1 in severely obese children of Slovak and Moravian descent to determine if genetic variants within SIM1 may influence the development of obesity in these populations. METHODS: The SIM1 promoter region, exons and exon-intron boundaries were sequenced in 126 unrelated obese children and adolescents (2-18 years of age) and 41 adult lean controls of Slovak and Moravian origin. Inclusion criteria for the children and adolescents were a body mass index standard deviation score higher than 2 SD for an appropriate age and sex, and obesity onset at less than 5 years of age. The clinical phenotypes of the SIM1 variant carriers were compared with clinical phenotypes of 4 MC4R variant carriers and with 27 unrelated SIM1 and MC4R mutation negative obese controls that were matched for age and gender. RESULTS: Seven previously described SIM1 variants and one novel heterozygous variant p.D134N were identified. The novel variant was predicted to be pathogenic by 7 in silico software analyses and is located at a highly conserved position of the SIM1 protein. The p.D134N variant was found in an 18 year old female proband (BMI 44.2kg/m2; +7.5 SD), and in 3 obese family members. Regardless of early onset severe obesity, the proband and her brother (age 16 years) did not fulfill the criteria of metabolic syndrome. Moreover, the variant carriers had significantly lower preferences for high sugar (p = 0.02) and low fat, low carbohydrate, high protein (p = 0.02) foods compared to the obese controls. CONCLUSIONS: We have identified a novel SIM1 variant, p.D134N, in 4 obese individuals from a single pedigree which is also associated with lower preference for certain foods.


Basic Helix-Loop-Helix Transcription Factors/genetics , Obesity/genetics , Repressor Proteins/genetics , Adolescent , Age of Onset , Calorimetry, Indirect , Case-Control Studies , Child , Child, Preschool , Czech Republic/ethnology , Female , Food Preferences , Genetic Carrier Screening , Humans , Male , Mutation , Obesity/ethnology , Pedigree , Phenotype , Receptor, Melanocortin, Type 4/genetics , Severity of Illness Index , Slovakia/ethnology
18.
Diabetes Res Clin Pract ; 126: 144-150, 2017 Apr.
Article En | MEDLINE | ID: mdl-28242437

AIM: Congenital hyperinsulinism (CHI) and glycogen storage disease (glycogenosis) are both causing hypoglycemia during infancy, but with different additional clinical features and therapeutic approach. We aimed to identify a genetic cause in a child with an ambiguous phenotype. METHODS AND RESULTS: We present a child with hyperinsulinemic hypoglycemia, physiological 3-OH butyrate, increased triglyceride serum levels, increased level of glycogen in erythrocytes, increased liver transaminases, and increased echogenicity on liver ultrasonography. As both parents of the proband were referred as healthy, we raised a clinical suspicion on glycogenosis with recessive inheritance. However, whole exome sequencing revealed no mutation in genes causing glycogenosis, but a novel heterozygous variant LRG_483t1: c.427-1G>A in the HNF4A gene was identified. Aberrant splicing resulting in in-frame deletion c.429_476del, p.(T144_I159del) was confirmed by sequencing of HNF4A transcripts reverse-transcribed from whole blood RNA. The same variant was found in five of eight tested family relatives (one of them already had diabetes, two had prediabetes). With regard to the results of DNA analysis, we added diazoxide to the therapy. Consequently, the frequency and severity of hypoglycemia in the proband decreased. We have also recommended sulfonylurea treatment after diabetes onset in adult mutation carriers. CONCLUSIONS: We have identified a novel HNF4A gene mutation in our patient with CHI and glycogenosis-like phenotype. The proband and her family members benefited from the genetic testing by WES method and consequently personalized therapy. Nevertheless, the HNF4A gene testing may be considered in selected CHI cases with glycogenosis-like phenotype prior WES analysis.


Congenital Hyperinsulinism/genetics , Glycogen Storage Disease/genetics , Hepatocyte Nuclear Factor 4/genetics , Adult , Child , Female , Genotype , Heterozygote , Humans , Male , Mutation , Phenotype
19.
Hum Mutat ; 38(4): 409-425, 2017 04.
Article En | MEDLINE | ID: mdl-28055140

Impairment of translation initiation and its regulation within the integrated stress response (ISR) and related unfolded-protein response has been identified as a cause of several multisystemic syndromes. Here, we link MEHMO syndrome, whose genetic etiology was unknown, to this group of disorders. MEHMO is a rare X-linked syndrome characterized by profound intellectual disability, epilepsy, hypogonadism and hypogenitalism, microcephaly, and obesity. We have identified a C-terminal frameshift mutation (Ile465Serfs) in the EIF2S3 gene in three families with MEHMO syndrome and a novel maternally inherited missense EIF2S3 variant (c.324T>A; p.Ser108Arg) in another male patient with less severe clinical symptoms. The EIF2S3 gene encodes the γ subunit of eukaryotic translation initiation factor 2 (eIF2), crucial for initiation of protein synthesis and regulation of the ISR. Studies in patient fibroblasts confirm increased ISR activation due to the Ile465Serfs mutation and functional assays in yeast demonstrate that the Ile465Serfs mutation impairs eIF2γ function to a greater extent than tested missense mutations, consistent with the more severe clinical phenotype of the Ile465Serfs male mutation carriers. Thus, we propose that more severe EIF2S3 mutations cause the full MEHMO phenotype, while less deleterious mutations cause a milder form of the syndrome with only a subset of the symptoms.


Epilepsy , Eukaryotic Initiation Factor-2/genetics , Hypogonadism , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Microcephaly , Mutation , Amino Acid Sequence , Family Health , Female , Genitalia/abnormalities , Humans , Male , Mental Retardation, X-Linked/pathology , Obesity , Pedigree , Sequence Analysis, DNA/methods , Sequence Homology, Amino Acid , Syndrome
20.
Vnitr Lek ; 62(11 Suppl 4): S103-112, 2016.
Article Cs | MEDLINE | ID: mdl-27921434

Congenital hyperinsulinism (CHI) is the most common cause of severe persistent hypoglycemia in neonates and infants. Early diagnosis and effective treatment (based on the principles of pharmacogenetics) play the key role for the prognosis. The DNA anlysis, which can identify mutation in one of the 11 genes causing MODY, is crutial in the diagnostics. Moreover, The genotype determines also the optimal therapy approach (medicaments, diet or rarely surgery). There was a large progress of novel medicaments treating particularly most severe (diazoxide-resistant) forms of CHI.Key words: congenital hyperinsulinism - diazoxid - DNA analysis - hypoglycemia - somatostatine analogues.


Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/therapy , Congenital Hyperinsulinism/genetics , Genotype , Humans , Infant, Newborn , Mutation , Prognosis , Treatment Outcome
...